If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x^2)-24x-36=0
a = 5; b = -24; c = -36;
Δ = b2-4ac
Δ = -242-4·5·(-36)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-36}{2*5}=\frac{-12}{10} =-1+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+36}{2*5}=\frac{60}{10} =6 $
| 4u+3(u-5)=34 | | 2(2a-1/2)=3(a+2/3) | | 2(w+2)-8w=28 | | -3(2x-4)+2(2x-4)-x=-17 | | -22=-7v+5(v-8) | | y=10^(-8*0.5+7) | | 7x+1/7=x/8+8 | | x2+9x+18=0 | | y=10^-8(0.5)+7 | | 103=218-v | | 31=-59-5x | | 3+4+4*15=n | | 2x+1/2=x/7+7 | | 61=-y+174 | | Y=0.6x+7 | | 28-x=237 | | 5(n+6)-19=61 | | 1+3s/5=7 | | -18=4=2x | | 58=255-y | | (a/2)-(a/8)=5 | | 14(v+1)-2v-4=(3v+3)-16 | | a/2-a/8=5 | | 4y(2.5y)=0 | | 4.9t^2-450.53t+2100=0 | | -6x-4=-34 | | 4.9t^2-282.84t+1800=0 | | 3(m-5)=m | | 6y-15y-19=91 | | 2+3.5x=3.25+5x | | 6a-10=3a+10 | | (3(x+5))/4=2x-5 |